Unlike rigid actuators, soft actuators can easily adapt to complex environments. Understanding the relationship between the deformation of soft actuators and external factors such as pressure would enable rapid designs based on specific requirements, such as flexible, compliant endoscopes. An effective model is demonstrated that predicts the deformation of a soft actuator based on the virtual work principle and the geometrically exact Cosserat rod theory. The deformation process is analyzed for extension, bending, and twisting modules. A new manufacturing method is then introduced. Through any combination of modules, the soft actuator can have a greater workspace and more dexterity. The proposed model was verified for various fiber-reinforced elastomeric enclosures. There is good agreement between the model analysis and the experimental data, which indicates the effectiveness of the model.
Loading....